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Abstract

The work presented here is a practical, nonlinear
controller design methodology for robot manipulators.
This methodology guarantees:1] the robot end-point
follows an input command vector "closely” when the
robot Is not constrained by the environment, and 2]
the contact force is 8 function of the same Input
command vector [(used in the unconstrained
environment] when the robot is constraeined by the
environment. The controller Is capable of *handling*®
both constrained and unconstrained maneuverings, and
is robust to bounded uncertainties in the robot
dynamics. The controller does not need any hardware
or softwsare switch for the
between unconstrained snd constrained maneuvering.
‘Stability of the environment snd the manipulator as &
whole has been investigated, end a bound for stable
manipulation has been derived.
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Nomenclature

A the closed-Loop mapping from r to f

d nx1 vector of the external force on the robot
end-point

e nxi Input trajectory vector

€em, dy, positive scalars

E environment dynamics

f nx{ vector of the contact force

foo the Llimiting velue of the contact force for

rigid environment

robot dynamics with positioning controller
compensator transfer function matrix

nx1 input-command vector

degrees of the freedom of the system n<§
robot manipulator stiffness

positive scaler

the forward Loop mapping from e to f
environment deflection

nx{ vector of the robot end-point position
the Limiting vealue of the robot position for
rigid environment

nx1 vectorof the environment position before
contact

2] nx1 vector of the joint angles of the robot
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1. Introduction

In genersal, manipulation consists of two
categories. In the first category, the manipulator
end-point Is free to move in all directions. In the
second, the manipulator end-point Interacts
mechanically with the environment. Most assembly
operations and manufacturing tasks require mechanical
interactions with the environment or with the object
being manipulsted, along with "fast' motion in free and

unconstrained space. Therefore, the objectlve of this
work Is to develop a control system such that the

robot will be capable of *handiing” both types of
maneuvers without any herdware and software
switches. The hardware and software switches used In
algorithmssuchas hybridforce/position controldevelop
unplteasent transient response in the transition period.
In meeting the above objective, the goal Is to develop
acontroller for the robot manipulatorsuch that:

1} The robot end-point follows an_Input-command
vector '“closely" when ther obot is not constrained (a
more rigorous definition for “closely" will follow).

2) The contact force! i1s a function of the same
Input-command used In the unconstrained maneuvering
when the robot Is constrained by the environment.

Previous researchers have suggested two
epproaches for assuring compliant motion for robot
manipulators. The first epproech Iseimed at controlling
force and position In & nonconflicting way. In this
method, force Is commanded along those directions
constrained by the environment, while position Is
commanded along those directions in which the
manipulator Is unconstrained &nd free to move
{11,12,13,18,20). The second approach is aimed at
developing a relationship between the Interaction
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forces and the manipulator position. By controlling the
manipulator position and specifying its relationship to
the interaction forces, one can ensure that the
maniputator will be able to maneuver In & constreined
envlfonment while maintaining appropriate contact
forces(1,3,4,14). The design method presented here Is
considered to be part of the second approach toward

developing compliant motion. We are lLooking for a
controller that guarantees the tracking of the Input

command vector when the robot Is not constrained, as
well as the relation of the contact force vector with
the same input command vector when the robot
encounters an unknown environment.

Section 2 describes the polnts of Improtance in
generating compliant motion. This will Lead usto Section
3 that Introduces the controller design specifications.

Section 4 s devoted to describing a8 new approach In

modeling the robot manipulators while Section 5
develops & method for modeling the environment. The
erchitecture of the closed-loop control Is presented in
Section 7, and the stability of the closed Loop system Is
analyzed In sections 8 and 9. Reference 8 describes an
example of the application of this method on an active
end-effector

2. Motivation

The following scenario reveals the cruclial need
for compliance control in high-speed manufacturing
operations. Consider an assembly operation by a8 human
worker in which there are parts to be assembled on
the table. Each time the worker decides to reach the
table and pick up a part, she/he always encounters
the table with & non-zero speed; In other words
she/he hits the table while picking up the parts. The
worker also assembles the parts with 8 non-zero
speed; meaning the parts hit each other while they are
assembled. The ability of the human hand to encounter
the unknown &snd unstructured environment with non-
zero speed allows for a higher speed of operation.
This ability in humen beings flags the existence of a
compliance controlmechanism in biological systems. This
mechanism guarantees the "stabllity" of contact forces

In constrained maneuvering, in addition to high speed
maneuvering in an unconstrained environment. With the

existing state of technology, we do not have an
integrated robotic assembly system that can encounter
an unstructured environment as & human worker can.
No existing robotic assembly system is faster than &
human hand. The compliancy in the human hand allows
the workerto encounterthe environment with non-zero
speed. The ebove example does not Imply that we
choose to imitate human factory- Level physiological/

psychological behavior as our model to develop an
overall control system for manufacturing tasks such as
assemblyand finishingprocesses.We statedthis example
to show that: 1) a rellable and optimum solution for
simple menufacturing tesks such as assembly does not
yet exist and 2) i1t I1s the existence of an efficient, fast
compliance control system In human beings that aliows
for superior and faster performance. We believe
compllance control is one of the key Issues In the
development of high-speed manufacturing operations
for robot manipulators.

3. The Controller Desigh Objectives

The design objective Is to provide a stabilizing
dynamic compensator for the robot manipulator such
that the following design specifications are satisfied.

I. The robot end-point follows an input-command
vector, r, when the robot manipulator Is free to move.

II. The contact force, f, Is a function of the Input
command vector, r, when the robot Is in contact with
the environment.

The first design specification allows for free

manipulation when the robot is not constrained. If the
robot encounters the environment, then according to

the second design specification, the contact force will
be & function of the input command vector. Thus, the
system will not havea Largeand uncontrollable contact
force.Note that r Is an Input command vector that is
used for both unconstreined and constrained
maneuvers. The end-point of the robot will follow r
when the robot Is unconstrained, while the contact
force will be & function of r [preferably & Llinear
function for some bounded frequency range of r]J when
the robot is constrained.
4. Dynamic Model of the Robot with Positioning
Controllers

In this section we develop & new general approach
to describe the dynamic behavior of a lLarge class of
industrial and research- robot manipulators having
positioning controllers. The fact that most industrial
manipulators have some kind of positioning controllers
Is the motivation behind our approach. Also, 8 number
of methodologies exist for the development of the
robust positioning controliers for direct and
non-direct robot manlpulators (15,18). The unified
approach of modeling robot dynamics presented here is
expressed in terms of sensitivity functions. It allows us
to incorporate the dynamic behavior of all the



elements of a robot manipulator (l.e. actuators,
sensors and the Links structural compliance) in addition
to the rigld body dynamics.

Sectlon 4.1 I1s devoted to the nonlinear time domain
dynamic modeling of the robot manipulators while
section 4.2 describes the frequency domain modeling of
the robot manipulators. Although the frequency domain
technique Is confined to Linear systems, It gives more

insights to this general approach In modeling the
dynamic behavior of the robot. Since tnertia-invariant

robot manipulators have Linear dynamic behavior, It Is
more reasonsble to use frequency domain techniques

for controller design and analysis. The frequency

domsain design can &lso be used when the robot
dynamics Is Linearized in the neighborhood of a
particuler trajectory.
4.1 Time-Domain, Nonlinear Dynamic Mode! of the
Robot with Positioning Controllers

The end-point position of a robotmanipulator that
has a positioning controlier is "approximately" equati
to the Input trajectory vector, e, if e is bounded In
magnitude. The approximate equality of e and the
actual end-point position [in absence of external force
on the robot end-point) can be represented by mapping
G in equation 1.

y-Gle) 1t}

lly-ell

where: < &g for liellp < ey (2

lie ll,

e: The n-dimensional [(n¢6) input trajectory vector in a
global cartesian coordinate frame. .

y:The n-dimensional(n¢6) position vector of the robot
end-point ina global caertesian coordinate frame.

The definition for [-li, {(P-norm) Is given In Appendix A.
Note that e is theinput trajectory vector that o
commerclal robotmanipulator accepts via Its positioning
controller. Because of Limitation on the size of the
actuator torque, one cannot track a "Large" trajectory
vector, e, with & small error, g,. Scalar e, is deflned
to represent the confinement of the norm (*magnitude”

in the multivariable sense) of e. One can always find an
em 8nd g, expertmentally [or anaiyticaily if possible)

for a particular robot manipulator.

Robot manipulators with positioning controllers
are not Infinitely stiff in response to external forces
(also called disturbances). Even though the positioning
controllers of robots are usually designed to follow
the trajectory commands (according to relationships 1

end 2) and rejectdisturbances, the robot end-point
moves somewhat In response to imposed forces on the
robot end-point. The motion of the robot end-point in
response to Imposed forces s caused byeither
structural compliance in the robot or the positioning
controller compliance. The motion of the end-point of
a robot under the Imposed force at the end-point, d, In
the absence of any Input trajectory vector can be
represented by mapping S In equation 3.

y=s(d) (3)
Hulls

woan

where: <eg for lldll, < dy 4)

d Is the n-dimensional vector of the external force
that is Imposed on the robot end-point. The general
form of the nonlinear dynamic equations of a robot
manipulator with positioning controller can be given by
two nonlinear vector functions G and 8 In equation 5.
Note that slthough we have assumed d and e affect the
robot in a nonlineer fashion, equation 5 assumes that
the motion of the robot end-point is a Linear addition of
both effects.

y - Gle)+ 5(d) (51

The assumptlion that linear superposition holds for the
effects of d and e Is useful In understanding the nature

of the interaction between the robot and the
environment. This Interaction is In 8 feedback form and

will be clarified with the help of Figure 3. We will note
In Section 6 that the results of the nonlinear analysis
do not depend on this assumption and one can extend
the obtalned results to cover the case when Gle)and
S(d} do not superimpose. Figure 1 shows the nature of
the mapping In equation 5. No assumption on the
internal structures of Gl(e) and S[d) are made. We
essume that Gle} and S{d) are stable, nonlinear
operators in the Ly -space; in other words Gle) and S(d)
are such that G:iL"p—L",, S:L",—L", and also there
exsit constants a4, By, @2, end g such that
l1GLelllp < ayllell,+ B4 and 1ISAlig<aplidilp+ 2. (The
definition of stabllity In L,-sense Is given In Appendix A)

The modeting method described here allows us to
represent an approximation of the dynamic behavior of
the closed-loop positioning robot. This occurs without
being specific about the nature of the input trejectory,
e, and the structure of the positioning controller. A
simitar modeling method is given In Section 4.2 for
analysis of the Linearly treated robots.

4.2 Frequency Domain Dynamic Model of the Robot with
Positioning Controllers
A transfer function matrix, G, in equation 6 Is
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Figure 1: The Dynamic of the Manipulator with the
Positioning Controller

defined to describe the dynamic behavior of a robot
manipulator with positioning controller. This transfer
function matrix maps the amplitude of the input
trajectory, e, to the amplitude of the robot
trajectory, y.

ylJjwl)=G6Jw) elJw) : (6)
where:

16U w)-1,)elJwlll,
<

€

for all wew, andllell,<ep {7

Some explsnations are needed for the practical
conditions that are Imposed by e, and w, on inequslity
7. Because of the Limitation on the size of the actuator
torque, one cannot track s "targe" input trajectory,
e, with & small tracking error, &, within the frequency
range of [0,w,). Scalar ey is defined to represent the
confinement of the megnitude ofe. Physical systems are
not responsive to high frequencylnput trajectory
commands.Inequality? will not holdat highfrequencies.
wye Is Introduced to represent this Limitation. The
frequency range (0,w,) where Inequelity 7 holds, Is
colled the bandwidth of the closed-loop positioning
system (2,6). g, is @ small number for good poslitioning
systems. As an example, for the ADEPT robot, € is equal
to 0.01 for all llell2¢1 cm, and w e (0,5 hertz) . With
any type of positioning controller, one can always
errive at Inequality 7 experimentally or analytically.
Conservative values for w, and e, are adequate to
represent an approximation of the closed-loop
posltlonlhg dynamic for the robot.

We express the dynamic behavior of a robot
manipulator in response to forces on the robot end-
point simitarty. We can express the sensitivity of a
robot manipulator by a matrix, S. The motion of the
end-point of a robot under the imposed force, d, at the
end-polint, in the absence of any Input trajectory
vector can be glven by equation 8.

conclusions.

ylUw)=S{jew) dljw) (8)
l1SUew) dijew)ll,
. 4 Ee
fld{Jwlli;
for all wew, and [ldll;<d,, (9)

S is & transfer function matrix that represents the
compliance (1/stiffness} of the robot. S Is called the
sensitivity matrix and for "good" posltioning systems Is
quite "small".{By "small" wemean the maximum singular
velue?of S Is a small number for all the frequencies
for which the external force, d affects the system.)

Assuming that the motion of the robot end-point is
a lineer eddition of e and d, equation 10 can be writen
to represent the dynamic behavior of a lLinearly
trested robot with & positioning controller:

ylJwl= GlJwlel Jwl+ 5[ jwldl jw) {10)

In the case of robot manlpulators with Linearized
dynamics In the nelghborhood of 8 particular
trajectory,G(6,,Jcwland S(6,,Jw} -where6, represents
the robot operating point- are
representatives of the robot dynamics.

more formal

5. Dynamic Behavior of the Environment
There Is no specific model for the environment

dynamics. The environment can be very "soft" or very
“hard". We do not restrain ourselves to any geometry
or to any structure. We try to svoid using structured
dynamic models such as first or second order transfer
functions or mass and spring systems as general
representation of the dynamic behavior of the
environment. These models are not general and the
stability analysis consequently results in non-general
Section 5.1 is devoted to nonlinear
time-domain dynamic analysis of the environment while
section 5.2 develops & linear dynamic behavior of the
environment In frequency domain.

5.1 Nonlinear, Time Domain Dynamic Behavior of the
Environment

We assume that If one point on the surface of the
environment Is displaced [e.9. by the end-point of the
robot) as vector of x, then the required force to do
such a tesk is defined by f (Figure 2). Mapping E in
equation 10 represents the dynamic behavior of the
environment.

f=E(x]) o (1)
Xo Is the the initial Location of the point of contact

before deformation occurs and y is the robot end-point
position {x=y-x,). No assumption is made on the
structure of E. We also assume E Is stable in L,-sense;



Figure 2: The Environment and its Dynamics

E:L"—L" end also there exist constants such as a3
end gz such that IE(X)l < aglixlly+ B3.

5.2 Dynamic Behavior of the Environment in Frequency
Domain

Extending equation 11 to cover the linearly
treated environment, equation 12 represents the
dynemic behavior of the environment with linear
differentiel equations.

flJow) = E[Jw) x(Jeo) (12)

E{Jw) Is & transfer function matrix that maps the
amplitude of the displacement vector, x to the

amplitude of the contact force, f. The matrix E Is &8 nxn
transfer function matrix. No assumption about E is

mede; E is a singular matrix when the robot interacts
with the environment in only some directions. For
example, In grinding a surface, the robot Is constrained
by the environment in the direction normel to the
surface only. Readers can be convinced of the truth of
equation 12 by analyzing the relationship of the force
and displacement of a spring as a simple model of the
environment. E resembles the stiffness of & spring.
Reference 3 and 4 represent {MsZ2+Cs+K) for E where
M, C and K are symmetric square matrices and s=jw(9).
M is the positive defintte tnertia metrix while C and K
are the damping and the stiffness matrices.

6. Nonlinear Dynamic Behavior of the Robot Manipulator
and Environment

Suppose a manipulator with dynsmic equation 5 is
in contact with an environment glven by equation 1.
The contact force will be equal to f. Note that when
the robot manipulator and environment are In contact
with each other, f=-d and x=y-x,. Figure 3 shows
the dynamics of the robot maniputator and the

environment when they are Iin contact with each other.
Note that in some applications, the robot will have only
uni-directionel force on the environment. For example,
In the grinding of a surface by a robot, the robot can
only push the surface. If one considers positive f, for
‘pushing" and negative f; for *putling®, then in this class
of manipulstion, the robot manipulator and the
environment are In contact with each other onLy along
those directions where f>0 for I=i,..,n. In some
applications such as screwing & bolt, the Interaction
force can be positive and negative. This means the
robot can have clockwise and counter-clockwise
interaction torque. The nontinear discriminator
block-diagram In Figure 3 Is drawn with dashed-line to
ILlustrate the above concept.

Considering equatlons 5 snd 11, equstions 13 and
14 represent the entire dynamic behavior of the robot
end envirenment as a whole.

y=Gle) + S{-f)

f=E(x) where  =y-x, (14)

The block diagram
mappings 13 and 14.

In Figure 3 shows the nature of
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Figure 3: Interaction of the Robot Manipulator with the

Environment

If all the operators In Figure 3 are considered
linear trensfer function matrices, equations 15 and 16
can be obtained from equations 13 and 14 to represent
the end point position and the contact force when x,= 0.

y=- (1+SE)-'Ge {(15)

f=-E(I+SE)-'Ge (16)

Equations 13 and 14 [equations 15 and 16 In the
case of Linearly treated robots) represent the dynamic
behavior of the robot for both constrained and
unconstreined maniputations. When the robot Is not In
contact with the environment, x=-0 and the equation
that governs the dynamics of the system is given by

equation 1 (equation 6 for the Linearly treated robots).
Note the natural feedback in the system; the force

developed in the system from the interaction of the
robot manipulator and the environment affects the
robot motion in a feedback fashion.



To simplify our analysis, V Is Introduced In
equation 17 as a mapping from e to f In Figure 3.

f=V[e) (17)

The mappings gilven by equations 13 and 14 can be
simplified by mapping V:e—f where e and f are
shown In Figure 4. Note that V is assumed as stable
operator in Ly-sense; In otherwords:V:L"g—L", and
also [IV(e)ll,¢ a4llell+ g4 where a4 and g4 are
constants. Note that one can still define V without
assuming the superposition of effects of e and d In
equation 5. If all the operators In Figure 3 are
transfer function matrices, then V-E[I1+SE)~'G

L v

Figure 4: The Mapping from the Trajectory to the
Contact Force

7. The Architecture of the Closed-loop System

The control architecture In Figure 5 shows how
compliancy is belng developed In the system. The
motivation behind this architecture Is clarified In
Section 9 with the help of some equations. The
compensator, H Is considered to operate on the contact
force, f. The compensator output signal is being
subtracted from the Input command vector, r, resulting
In the error signel, e for the robot manipulator.
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Figure 5: The Closed-loop System

There are two feedback Loops In the system; the
upper Loop {which is the natural feedback Loop), is the
same as the one shown in Figure 3. This Loop shows how
the contact force affects the robot in & natural way
when the robot Is In contact with the environment. The
Lower feedback Loop is the controlled feedback Loop.

If the robot and the environment are not In
contact, then the dynamic behavior of the system
reduces to the one represented by equation 1, which is
a simple positioning system. When the robot and the

environment are In contact, then the vatue of the
contact force and the end-point position of robot are
glven by f and y where the following equations are
true:

y=Gle)+ 8(-1) (18)
f=E(x) where X=y-x, (19)
e=r-H(f) {20}

If the operstors in equations 18,19 and 20 are
considered transfer function metrices, equations 21 and

22 can be obtained to represent the interaction force
and the robot end point trajectory when x,=0.

feE{I+SE+GHE)-'Gr (21)

y=(I+SE+GHE)'6r (22}

We plan to choose a class of compensators, H, to
control the contact force with the Input command r. By
knowing S8, G and E and choosing H one can shape the
contact force. The velue of the H Is the designer cholce
and depending on the task, it can have various values
In different directions. A Large velue for H develops a
compliant system while a small H generstes a stiff
system. H must also guarantee the stability of the
closed-loop system of Figure 5. The trade-off between
the closed-loop stability and the size of H Is
investigated in Sections 8 and 9.

When the robot is not In contact with the
environment, the actual position of the robot end-point
Is governed by equation 1. When the robot Is in contact
with the environment, then the contact force follows r
according to equations 18, 19 and 20. The Input
command vector, r, Is used differently for the two
categories of maneuverings; as ean Input trejectory
commend In unconstrained space [equation 1) and as a
command to control force In constrained space. We do
not commeand any set-point for force as we do In
admittance control [13,19). This method Is called
Impedance Control {1,3,4) because it accepts & position
vector as Input and It reflects a force vector as
output. There is no hardware or software switch in the
control system when the robot travels from
unconstrained space toconstrained space. The feedback
Loop on the contact force closes naturally when the
robot encounters the environment.

Section 8 Is devoted to derivation of a sufficient
condition for closed stability of the system In Figure 5,

when all the operators are noniinear mappings.
Section 9 develops similar results whenall the
operators of Figure 5 are linear transfer function
matrices. We also show that the stabllity condition
derived in the Llinear freme is a subclass of the



condition derived by the nonlinear analysis.

8. Nonlinear Time Domain Stability Analysis

The obJective of this section is to arrive at a
sufficient condition for stabllity of the system shown In
Figure 5. This sufficlent condition leads to the
Introduction of a class of compensators, H, that can be
used to develop compliancy for the family of robot
manipulators with dynamic behavior represented by
equation 5. Using operator V defined by equation 17,
the block diagram of Figure 6 Is constructed as a
simplified version of the block diagrem of Figure 5. The
following theorem (Small Gain Theorem) states the
stability condition of the closed-loop system shown In
Flgure 6. A corollary is then followed to represent &
bound on H to guarantee the stability of the system.

r e f
—— Vv

Figure 6: Manipulator and the Environment with Force
Feedback Compensator (Simplified Version of Figure 5)

Stability Theorem.

If:

1.V Is a L,-stable operator, that is

a) Vie): Lp—L",

b} Hlvielll<agllelly+ gy

where a4 and g, are positive constants, and If
I. H is chosen such that mapping HV{e) Is Lp-stable,
that is

a) HV(e): L"y—L"y (25)
b) IHviellip<esliell,+ Bs where as<1 (26)
then the closed-loop system (Figure 6) Is L,-stable.
Condition | is alresdy assumed In Section 6. The Proof
is glven In Appendix A.

(23)
(24)

Corollary

The key parameter in the theorem is the size of
as. Aiccording to the above theorem, to guesrantee the
closed-loop stability of the system, H must be chosen
such that the norm of HV{e) is Linearty bounded with &
slope that is smaller than unity. We choose H as a
transfer function matrix, therefore inequstlity 27 is
true.

IIHV(elllp ¢ o max(H)x]I V(e (27}

where onax(H) Is the maximum singuler value of H over
all we(0,90). Considering inequality 24, inequality 28 Iis

true

"HV(e]”p( a—max[H]x[aqlle“p" ﬁ4] [28]

Comparing fnequality 26 with Inequallity 28,to guarantee
the closed-loop stability, omax(H) as must be smaller
than unity, or, equivalentiy:

O'm.x(H]( 1/ [+ £ (29)

Substituting for a4 from Inequality 24:

llellp

IvVielllp- g4
To guarantee the stability of the closed-loop system,

one sufficient for stability Is can be obtalned by
considering p4= 0

Um.x[H] </ a4 <

vy

llellp
o'max(H) <
IVielllp

To guarentee the stability of the closed-loop system,
the opmax(Hl must be less than the reciprocal of the
“magnitude” of the mapping In the forward Loop In
Figure 6. A similar result is glven in Section 9 using
muttivariable Nyquist Criteria.

9. Frequency Domain Stability Analysis

The objective of this section is to arrive at s
sufficient condition for stabllity of the system shown In
Figure S when all the operators are lLinear tranfer
function matrices. This sufficlent conditlon Leads to the
introduction of a class of transfer function matrices H,
thaet stabilizes the family of linearly treated robot
maniputetors and environment with dynamic equations
11 and 12. The detailed derivation for the stability
condition is given In Appendix C. According to the
results of Appendix C, the sufficient condition for
stability is glven by inequality 32.

Omax(GHE)Somn(SE+ 1)  for all we(0,90) (32}
or a more conservative condition,
. Ay
O max (E(SE+1,)7'6)
for all cwel0,00) (33)

If H Is chosen outside of this class, Instability and
consequent separation may occur. Inequality. 33 Is a
sufficient condition for stability. If inequality 33 is not
satisfled, no conclusion on the stability of the system
can be achieved. Note the slmlierltg of the frequency
domein stabllity condition with the one obtained by
inequelity 31. Substituting E[SE+I,)"'G for V In
inequality 31 and using the notation of singular values
when p=2, Inequeality 33 will result. According to



Inequatity 33, the "size” of H in all directions must be
smaller than the reciprocal of the maximum "size* of

the forward Loop transfer function, E(SE+1,)"'G.
r £ =4 f
E[SE+[ 4] G

! H pet

Figure 7: The Simplified Form of Figure 5

Inequality 33 reveals some facts about the size of H.
The smaller the sensitivity of the robot manipulator Is,
the smaller H must be chosen. Also from Inequality 33,
the more rigid the environment Is, the smaller H must
be chosen. In the "ideal case", no H can be found to
allow & perfect positioning system (5=0) to Interact
with an Infinitely rigid environment (E=oo),

9.1 Stability for very rigid environment

In most menufacturing tasks such as robotic
deburring, the end-point of the robot menipulator Is in
contact with & very stiff environment. Robotic
deburring and grinding are examples of practical tasks
in which the robot is In contect with hard
environment(5,7,8]. According to the resutts In
fippendix B, when the environment Is very stiff, (E Is
very "large” in the singuler value sense), the Limiting
velue for the contact force and the end-point position
are given by equations 34 and 35 respectively:

foo = {S+GH)'G r (34)

Yoo = O {35)

Since G=I, for all we(0,w,), the value of the contact
force, f, within the bandwidth of the system [0,w,) can
be approximated by equation 36:

foo = [S+H)'r for all cwel0,w,) (36)

By knowing S and choosing H, one can shape the contact
force. The value of {S+H) within {0,w,) Is the designer's
choice and, depending on the task, it can have various
velues in different directions(3,4). A large value for
(5+H) within [0,w,} develops a compliant system while &
small (S+H) generates a stiff system. If H Is chosen such
that (S+H) Is *Large” in the singular value sense at high

frequencies, then the contact force In response to high

frequency components of r will be small. If H is chosen
to guarantee the compliance In the system according to
equation 34, then it must also satisfy the stability
condition. It can be shown that the stability criteria for
Interaction with a very rigild environment is given by
inequality 37:

1

Omax (HI€ for all we(0,00) (37)

Omax (57'6)

It Is clear that If the environment is very rigid,
then one must choose & very small H to satisfy the
stabllity of the system when S 1s *small". (A good
positioning system has "small” S). Since G=I, for all
w €(0,w,], the bound for H, for & rigid environment
and & *small” stiffness, is glven by inequality 38.

Omax (H Comin(8) for el  wel0,w,) (38)

If S is zero, then no H can be obtained to stabilize the
system. In other words to stabillze the system of the

very rigid environment and the robot, there must be a
minimum compllancy in the robot.

9.2 Stability Condition when nz1

In the case of the one degree of freedom system
in Figure 8 the condition for stabllity is piven by
inequality 39.

lIHGllz < H(S+1/E}li, for all we(0,00) (39)

where |||l denotes the magnitude of & transfer
function. Since in many cases G=1for all O<w<w,, then
H must be chosen such that the following Inequallty is
satisfied.

ItHliz < Wlis+1/E)l;  for

all well,w,. (40}

Inequality 39 cleerly shows that the more rigid the
environment Is, the smaller H must be chosen to
gusrantee the stability of the closed-loop system. In
the case of a rigid environment {"Large” E) and a "good"
positioning system, H must be chosen as & very smalt
gain. _

We conclude that for stability of the environment
end the robot taken &ss & whole, there must be some
Iinitial compliancy either In the robot or in the
environment. The Initial compllancy In the robot can be
obteined by & non-zero sensitivity function or & passive
compliant element such as an RCC (Remote Center
Compliance). Practitioners always observed that the
system of & robot and a stiff environment can slways
be stabilized when & complient element (e.g. plece of
rubber or an RCC) Is instalied between the robot and
environment. One can also stabilize the system of robot
and environment by Increasing the robot sensitivity
function. In many commercial manipulators the
sensitivity of the robot manipulators can be increased
by decreasing the gein of each actuastor positioning
Loop. This also results in a narrower bandwidth {slow
response In the unconstrained maneuvering} for the



robot positioning system.

10. Summary and Conclusion

A new controller architecture for compliance
control has been Investigated using unstructured
models for dynamic behavior of robot manipulators and
environment. This unified approach of modeling robot
and environment dynamics Is expressed In terms of
sensltivity functions. The control approach allows not
only for trecking the Input-command vector, but also
for compliancy in the constrained mneuverings. A bound
for the global stability of the menipulator and
environment has been derived. For stability of the
environment and the robot taken as a whole, there
must be some initial compllancy either in the robot or In
the environment. The initial compliancy In the robot
can be obtained by a non-zero sensitivity function or a
passive compllant element such as an RCC [Remote
Center Compllance).
Appendix A

Definitions 1 to 7 will be used In the stability proof
of the closed-loop system (16,17).

Definition 1: For all pell,=), we Label as ", the set
consisting of all functions f=(f1,f2,....fn)7: (0,00)—R"
such thet:

o0

I 1 £, IP dt <oo for
[+]

i=12,..,n

Definition 2: For all Te€(0, o)}, the function fy defined
by:
f o<KT

fr -
0 Tt

is called the truncation of f to the interval (0,T).
Definition 3: The set of all functions f=(fy,fo,....f)T:
{0,00)~R" such that fretLf, for all finite T Is denoted

by L"e. f by itself may or may not belong to L.

Definition 4: The norm on L," Is defined by:

. /2
el = I fillp2
P ; ilp
where lifill; i1s defined as:
oo 1/p
Il J wil fi P dt

where wIs the welghting factor. w;is particularly
useful for scaling forces and torques of different units,
. .): —
Definjtion 5: Let V(-): L"pe— L 6.
operator V(-] Is L,-stable, If:

We say that the

8l V() LMy L7,

blthere exist finite real constants a4 and g4 such that

llvie) ooy ”e||p+§4 v el

According to this definition we first assume that
the operator maps L"pe to L. It Is clear that If one
does not show that v(-):L"g—L",, the satisfaction of
conditlon (e8] Is impossible since L"pe cONtains L". Once
the mapping, v(:), from L",, to L7, Is established, then
we say that the operator vi{-] is L,~stable If, whenever
the Input belongs to L%, the resulting output belongs
to L"p,. Moreover the norm of the output Is no Larger

than «4 times the norm of the input plus the offset
constant 4.

Definition 6: The smallest a4 Such that there exist s B4
so that Inequatity b of Definition 5 is satisfied is called
the gain of the operator v{-].

Definition 7: Let V[-}:L"pe— L"pq.

sald to be causal If:

The operator V(-] Is

Vielr= Vley) V¥ T<¢eo and

vV e€lf,
Proof of the stability theorem

Define the closed-loop mapping A:r—e (Figure 8).

e=r-HV(e) (A1)

For each finite T, Inequality A2 Is true.
llegllp< lirellp+ H HVLe)rllp for all te(0,T)
Since HV[e)is L,-stable.Therefore, Inequality A3is true.

Nerllp<lire o+ as llegllp+ g5 for all tel0,T)  (A3)

Since «s Is less than unity:

Ihrellp Bs

letllp < + for all te(0,T)

-asg

Inequelity A4, shows that ef') Is bounded over {0,T}.
Because this reasoning Is valld for every finite T, It
follows that e(JeL™,, l.e., that All®e—L e . Next we
show thet the mapping A is Lp,-stable In the sense of
definition 5. Since relL®,, therefore |Irll;<oo for all
te(0,00), therefore inequality AS is true.

llellp ¢ oo for all te(0, o0)

inequallty A5 Implies e belongs to L,-space whenever r
belong to Ly-space.With the same reasoning from



equations A1 to AS, It can be shown that inequality AB is
true.

I rllp Ps

+

liellp < (R6)

Inequallty R6 shows the linear boundedness of e.
{Condition b of definition 5) Inequality A6 and A5 taken
together, guarantee that the closed-loop mapping A is
Ly-stable. ‘
Appendix B

A very rigid environment generates a very Large
force for a small displacement. We choose the minimum
singular value of E to represent the size of E. The
following theorem states the Limiting value of the force
when the robot manipulator is In contact with a very
rigid environment.

Theorem

If omnlE)>M, where M is an arbitrarily Large number,
then the value of the force given by equation 21 will
approach to the expression given by equation B1

foo = [S+GH)'G r (81)

Proof: We will prove that lif,-fll2. approaches & small
number as M approaches a Large number.

foo~ f = {S+GHJ™ [ I~ [S+GH) E (I,+SE +GHE )-"1Gr B2)
Factoring (I,+SE+GHE}™ to the right hand side:
foo— f =(S+GH) (I,+SE+GHE)™" Gr (B3)
Ifoo- fll2 <omaxIS +G HI'' xomaxlln*S E +G H EJ™!

X Oax (G) ] I’"z (B4)

Tmax (G iz
Ifoo-fllz< (85)
OCmin(S+6 H) % {omin (SE+G HE) -1
Omax Bl Tl

Ifoafll2¢ (B6)

o min(S+ 6 H)x[ominlS+GHI*ormn(E) -1

O mex(6) &and opmn(S+GH} are bounded wvelues. If
ominlE}>M, then It Is clear that the teft hand side of
Inequality B6 cen be an arbitrarily small number by
choosing M to be a Large number. The proof for ye,=0
I1s similar to the above.
Appendix C

The objective Is to find a sufficlent condition for
stability of the closed-loop system (n Figure 5 by
Nyquist Criterla. The block diagram In Figure 5 can be
reduced to the block diagram In Figure C1 when all the
operators are Linear transfer function matrices and
Xo=0

There are two elements in the feedback Lloop; GHE

‘«:

GHE + SE

Figure C1: Simplified Block-Diagram of the System in
Figure 5
and SE. SE shows the natural force feedback while GHE
represents the controlled force feedback in the
system. If H=0, then the system in Figure C1 reduces
to the system iIn Figure 3 {a stable positioning robot
manlputetor which is In contact with the environment E.)
The objective Is to use Nyquist Criteria (10) to arrive at

‘the sufficient condition for stability of the system when

H=0.The following conditions are regarded:

1) The closed Loop system In Figure C1Is stable If H=0.
This condition simply states the stability of the robot
manipulator and environment when they are In
contact. (Figure 3 shows this configuration.)

2)H is chosen as & stable Linear transfer function
matrix. Therefore the augmented Loop transfer
function [GHE+SE) has the same number of unstable
poles that SE has. Note that In many ceses SE Is &

stable system.
3]} Number of poles on jw exis for both Loop SE and

GHE+SE are equal.

Considering that the system In Figure Ct Is stable
when H=0, we plan to find how robust the system is
when HE is added to the feedback Loop. If the loop
transfer function SE (without compensator, H) develops
a stable closed-loop system, then we are Looking for a
condition on H such that the augmented Loop transfer
function (GHE+SE) guarantees the stabltity of the
closed-Loop system. According to the Nyquist Criteria,
the system In Figure C1 remains stable if the clockwise
encirclement of the det(SE+GHE+I,) around the center
of the S-plane Is equal to the number of unstable poles
of the Loop transfer function {SE+GHE). According to
conditions 2 and 3, the Loop transfer functions SE and
(SE+GHE)} both have the same nurpber of unstable
poles. The closed-loop system when H=0 Is stable
according to condlition 1; the encirclements of
det(SE+I,) Is equal to unstable poles of SE. When H Is
added to the system, for stability of the closed-loop
system, the number of the encirclements of
det(SE+GHE+1,) must be equal to the number of
unstable poles of the (SE+GHE). Since the number of
unstable poles of (SE+GHE) end SE ere the same,
therefore for stability of the system det(SE+GHE+I,)
must have the same number of encirclements that



det{SE+I,) has. A sufficient condition to guarantee the
equallity of the number of encirclements of
det(SE+GHE+I,}and det[SE+I,}Is that the det(SE+GHE+I,)
does not pass through the origin of the s-plane for all
possible non-zero but finite values of H, or

det(SE+GHE+ I,)» O for all we(0,00) (c1

i sufficient condition to guarantee thet det([SE+GHE+1,)
Is not equal to zero is given by inequeality C2.

O max (GHE)S o pnin, (SE+1,) for all wel0,00) (c2)
or 8 more conservative condition:
O max [H) forallw €(0,00) (c3)

O max (E (SE+1,)" G)

Note that E(SE+I,)"'G Is the transfer function matrix
that maps e to the contact force, f. Figure 7 shows the
closed-loop system. According to the result of the
theorem, H must be chosen such that the size of H Is
smaller than the reciprocsal of the size of the forward

Loop transfer function, (E(SE+I,)"'G).
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