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1. Introduction
In generoL, monlpuLotlon consists of two

cotegorles. In the first cotegory, the monlpuLotor

end-point Is free to move In oLL directions. In the

second, the monlpuLotor end-point Interocts

mechonlcoLLy with the environment. Most ossembLy

operotlons Bnd mBnufBcturlng tBsks require mechBnlcBL

InterBctlons with the environment or with the object

being menlpuLoted, oLong with "fost" motion In free Bnd

unconstrolned spoce. Therefore, the objective of this
work Is to deveLop 0 controL system such thBt the

robot wiLL be copBbLe of "hondLlng" both types of

mBneuvers without Bny hBrdwBre Bnd softwere

switches. The hordwBre Bnd softwore switches used In

eLgorlthm s such os hybrid force/position controL develop

unpLeosont trBnslent response In the tronsltlon period.

In meeting the Bbove objective, the gOBL Is to deveLop

e controLLer for the robot monlpuLBtorsuch thot:

1) The robot end-point follows en. Input-commend

vector "closely" when ther obot Is not constrelned (e

more rigorous definition for "cLoseLy" wiLL follow).

2) The cont~ct force' Is ~ function of the s~me

Input-command used In the unconstr~lned m~neuverln9
when the robot 15 constrained by the environment.

Previous researchers have suggested two

approaches for assuring compLiant motion for robot

manlpuLotors. The first opproach Isalmed ot controLLing

force and position In a nonconfLicting woy. In this

method, force Is commanded aLong those directions

constrained by the environment, whiLe position Is
commanded oLong those directions In which the

monlpuLator Is unconstrained ond free to move

(11,12,13,19,201. The second approach Is aimed at

deveLoping e reLetlonshlp between the Interaction
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Nomenclature

A the cl.osed-l.oop mopping from r to f
d n"1 vector of the externol. force on the robot

end-point
e nx1 Input trojector\;j vector

em. dm posItive scal.ars
E environment d\;jnamlcs

f nx1 vector of the contact force

foo the l.lmltlng val.ue of the contact force for

rigid environment
G robot dynamics With positioning control.l.er

H compensator tronsfer function motrlx

r nx1 Input-command vector

n degrees of the freedom of the system n<6

S robot manlpul.ator stiffness

T positive scol.ar

V the forward l.oop mopping from e to f

x environment defl.ectlon

y nx1 vector of the robot end-point position
Yoo the l.lmltlng val.ue of the robot position for

rigid environment
x 0 nx1 vectorof the environment position before

contoct

e nx1 vector of the Joint ongles of the robot
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psychoLoglcoL behovlor os our modeL to deveLop on

overaLL controL system for monufocturlng tosks such os

ossembLyond finishing processes.We stotedthls exompLe

to show thot: 1) 0 reLlobLe ond optimum soLution for

simpLe monufocturlng tosks such os ossembLy does not

yet exist ond 2) It Is the existence of on efficient, fost

compLlonce controL system In humon beings thot oLLows

for superior ond foster perform once. We beLieve

compLlonce controL Is one of the key Issues In the

deveLopment of high-speed monufocturlng operotlons

for robot monlpuLotors.

forces ond the monlpul-otor position. By control-l-lng the

monlpul-otor position end specifying Its rel-otlonshlp to

the Interoctlon forces, one con ensure thot the

monlpul-otor wil-l- be obl-e to moneuver In 0 constrolned

environment whll-e molntolnlng opproprlate contoct

forces(1,"3,4,14J. The design method presented here Is

considered to be port of the second opproach toword
devel-oplng compl-iont motion. We ore I-ooklng for a
control-l-er thot guorontees the trocklng of the Input

commond vector when the robot Is not constrolned, as

wel-l- os the rel-atlon of the contact force vector with

the same Input commend vector when the robot

encounters on unknown environment.

Section 2 describes the points of Improtance In

generotlng compl-lant motion. This wil-l- I-eod us to Section
"3 thot Introduces the control-l-er design speclflcotlons.

Section 4 Is devoted to describing 0 new opprooch In

model-ing the robot monlpul-otors whll-e Section 5

devel-ops 0 method for model-ing the environment. The

architecture of the cl-osed-l-oop control- Is presented In

Section 7, and the stobil-ity of the cLosed Loop system Is

anoLyzed In sections 8 end 9. Reference 8 describes on

exompl-e of the oppLlcatlon of this method on on active

end-effector

3. The Controller Design Objectives

The design objective Is to provide a stabilizing

dynamIc compensator for the robot m~nlpulator such
that the following design specifications ~re satisfIed.

I. The robot end-point follows on Input-commond

vector, r, when the robot monlpuLator Is free to move.

II. The contact force, f, Is a function of the Input

command vector, r, when the robot Is In contact with

the environment.

The first design specification allows for free

manipulation when the robot Is not constrained. If the
robot encounters the environment, then according to

the second design specification, the contact force wilL

be a function of the Input command vector. Thus, the

system wilL not havea large and uncontroLlabLe contact

force. Note that r Is an Input command vector that Is

used for both unconstrained and constrained

maneuvers. The end-point of the robot WilL folLow r
when the robot Is unconstrained, while the contact

force WiLL be a function of r [preferabLy a Linear

function for some bounded frequency range of r) when

the robot Is constrained.

2. Motivation

The following scenario reveals the crucial need

for compliance control In high-speed manufacturing

operations. Consider an assembl~ operation b~ a human
worker In which there are parts to be assembled on

the table. Each time the worker decides to reach the

table and pick up a part, she/he alwa~s encounters

the table With a non-zero speed; In other words

she/he hits the table while picking up the parts. The

worker also assembles the parts with a non-zero

speed; meaning the parts hit each other while the~ are

assembled. The ablllt~ of the human hand to encounter
the unknown and unstructured environment with non-

zero speed allows for a higher speed of operation.

This ablllt~ In human beings flags the existence of a

compliance control mechanism In biological s~stems. This

mech~nlsm gu~r~ntees the .st~blllt~. of cont~ct forces
In constrained m~neuverlng, In ~ddltlon to high speed
maneuvering In ~n unconstr~lned environment. With the

existing state of technolog~. we do not h~ve ~n

Integrated robotic assembl~ s~stem th~t c~n encounter

~n unstructured environment ~s ~ human worker can.

No existing robotic assembl~ s~stem Is faster than ~

human hand. The compllanc~ In the human hand allows

the workerto encounterthe environment with non-zero

speed. The ~bove ex~mple does not Imply th~t we

choose to Imitate hum~n f~ctor~- level phYSlologlc~l/

4. Dynamic Model of the Robot with Positioning

Controllers
In this section we develop 0 new generol opprooch

to describe the dynomlc behovlor of 0 Lorge closs of

Industrlol end reseorch.robot monlpulotors hovlng

positioning controllers. The foct thot most Industrlol

monlpulotors hove some kind of positioning controllers

Is the motlvotlon behind our opprooch. Also, 0 number
of methodologies exist for the development of the

robust positioning controllers for direct ond

non-direct robot monlpulotors [15.18). The unified
opprooch of modeling robot dynomlcs presented here Is
expressed In terms of sensitivity functions. It ollows us

to Incorporote the dunomlc behovlor of oll the



end 2) end reject dlsturbences, the robot end-point

moves somewhet In response to Imposed forces on the

robot end-point. The motion of the robot end-point In

response to Imposed forces Is caused byelther

structural compliance In the robot or the positioning

controller compllence. The motion of the end-point of
e robot under the Imposed force at the end-point, d, In

the absence of eny Input trajectory vector can be

represented by mapping S In equation 3.

y-S(d) (3)

elements of e robot menlpuletor (I.e. ectuetors,

sensors end the \.Inks structurel compliance) In eddltlon

to the rigid body dynamics.

S.ectlon 4.1 Is devoted to the nonlinear time domeln

dynamic modeling of the robot manipulators while

section 4.2 describes the frequency domain modeling of
the robot manipulators. Although the frequency domeln

technique Is confined to I.lneer systems, It gives more

Insights to this generel epproech In modeling the
dynemlc behevlor of the robot. Since Inertie-inverient

robot manipulators have linear dynamic behavior, It Is

more reasonable to use frequency domain techniques

for controller design and analysis. The frequency

domain design can elso be used when the robot

dynemlcs Is linearized In the neighborhood of a

particular trajectory.

lIyllp
where: for II d lip < dm (4)<"J" Ed

d IS the n-dimensional vector of the external force

that Is Imposed on the robot end-point. The general

form of the nonlinear dynamic equations of a robot

menlpulator with positioning controller can be given by
two nonlinear vector functions G and S In equation 5.

Note thet elthough we have assumed d and e affect the

robot In e nonlinear fashion, equation 5 assumes that

the motion of the robot end-point Is a linear addition of

both effects.

4.1 Time-Domain, Nonlinear Dynamic Model of the

Robot with Positioning Controllers

The end-point position of a robot manipulator thet

has e positioning controller Is "epproxlmately" equel

to the Input trajectory vector, e, If e Is bounded In

magnitude. The approXimate equality of e and the

ectual end-point position [In absence of external force

on the robot end-point) can be represented by mapping

G In equation 1.

IJ -G(e) + S(d) rSl

y-G[e) (1)

lIy-elip

lie lip
< £8 for II e lip < em (2)where:

e: The n-dimensional (n~6J Input trajectory vector In 0

global cartesian coordinate frame.

y:The n-dlmenslonal(n~6J position vector of the robot

end-point In a global cBrteslon coordinate frame.

The definition for II-lip (p-norm) Is given In AppendIx A.

Note that e Is thelnput traJector~ vector that 0

commercl6l robotm6nlpul6tor accepts Vl6 Its positioning

controller. Because of llmlt6tlon on the size of the

octu6tor torque, one cannot tr6ck 6 "l6rge" tr6Jector~

vector, e, with a small error, £.. Scalar em Is defined

to represent the confinement of the norm ("magnitude"

In the multlvorloble sense) of e. One con olwo~s find on
em end £. experlmentoll~ (or onol~tlcoll~ if possIble)

for 0 portlculor robot monlpu\.otor.

Robot manlpulotors with positioning controllers

ore not Infinltel~ stiff In response to externol forces

(olso called disturbances). Even though the positioning

controllers of robots are usuall~ designed to follow
the troJectory commends (occordlng to relotlonshlps 1

The assumption that ~Inear superposition ho~ds for the

effects of d end e Is usefu~ In understendlng the neture

of the Interectlon between the robot end the
environment. This Interectlon Is In e feedbeck form end

wl~~ be c~erlfled with the he~p of Figure 3. We wl~~ note

In Section 6 that the resu~ts of the non~lnear ana~ysls

do not depend on this assumption and one can extend

the obtained resu~ts to cover the case when G(e)end

S(d) do not superimpose. Figure 1 shows the nature of

the mapping In equation 5. No assumption on the

Interna~ structures of G(e) and S(d) are made. We

essume that G(e) and S(d) are stab~e, non~lnear

operators In the Lp-space; In other words G(e) and S(d)

ore such that G:Lnp-Lnp, S:Lnp-Lnp ond a~so there

exslt constants ():1- ~1, ():2- and ~2 such that

IIG(e)llp«):lllellp"~lend IIS(d)llp«):21Idllp"~2. (The
definition of stobl~lty In Lp-sense Is given In Appendix A)

The mode~lng method described here e~~ows us to

represent en epproXlmotlon of the dynomlc behavior of

the c~osed-~oop positioning robot. This occurs without

being specific about the nature of the Input trajectory,
e, ond the structure of the positioning contro~~er. A

slml~ar mode~lng method Is given In Section 4.2 for
ene~ysls of the ~Ineor~y treoted robots.

4.2 Frequency Domain Dynamic Model of the Robot with

Positioning Controllers
A tronsfer function motrlx, G, In equetlon 6 Is



(8)

< Ee

bllJc.»-S(jc.» dlJc.»

IISlJc.» d(jc.»112

IId(jc.»1I2

for oLL <.>E <'>0 ond II d1l2< dm [9)

S Is a transfer function matrix that represents the

compliance (1/stlffness) of the robot. S Is called the
sensltlvltl:j matrix and for "good" positioning sl:jstems Is

quite "small".[BI:j "small" wemean the maximum singular
value2of S Is a small number for all the frequencies
for which the external force, d affects the sl:jstem.)

Assuming that the motion of the robot end-point Is
0 linear addition of e and d, equation 10 can be wr1ten

to represent the dl:jnamlc behavior of a llnearll:j

treated robot with a posItioning controller:

I:j[jc.»- G(jc.»e(jc.»+S(jc.»d(jc.» (10)

In the case of robot manipulators with linearized

dynamics In the neighborhood of B pertlcular

trejectory. G[eo,jcu) and S[eo.jcu) -where eo represents
the robot operating polnt- ere more formel

representatives of the robot dynamics.

where

(7)
5. Dynamic Behavior of the Environment

There Is no specIfic model for the environment

dynemlcs. The environment con be very "soft" or very
"herd". We do not rest rein ourselves to eny geometry

or to 6ny structure. We try to ovoid using structured

dyn6mlc models such 6S first or second order tr6nsfer
functions or m6ss 6nd spring systems 6S gener6l

represent6tlon of the dyn6mlc beh6vlor of the
environment. These models 6re not gener6l 6nd the

stebility 6n6lysls consequently results In non-gener6l
conclusions. Section 5.1 Is devoted to nonllne6r

tlme-dom6ln dyn6mlc 6n6lysls of the environment while

section 5.2 develops 6 llne6r dyn6mlc beh6vlor of the

environment In frequency dom6ln.

5.1 Nonlinear. Time Domain Dynamic Behavior of the

Environment
We essume thet If one point on the surfece of the

environment Is dlspleced (e.g. by the end-point of the

robot) es vector of x. then the required force to do

such 0 tesk Is defined by f (Figure 2). Mepplng E In

equetlon 10 represents the dynomlc behovlor of the

environment.

Some explanations are needed for the practlceL

conditions that are Imposed by em and <'>0 on Inequality

7. Because of the Limitation on the size of the actuator

torque, one cannot track a "Large" Input trajectory,

e, with a small tracking error, £8' within the frequency

range of (0,<'>0)' Scalar em Is defined to represent the

confinement of the magnltudeofe. PhysicaL systems are
not responsive to high frequency Input trajectory

commands.InequaLlty7 wiLL not hold at high frequencies.
<'>0 Is Introduced to represent this Limitation. The

frequency range (0,<'>0) where Inequality 7 holds, Is
called the bandwidth of the closed-Loop positioning

system (2,6). £8 Is a small number for good positioning

systems. As an example, for the ADEPT robot, £ Is equeL

to 0.01 for all IIel12 (1 cm, end <.> E (0,5 hertz) .With

eny type of positioning controller, one can always
errlve at Inequality 7 experimentally or aneLytlcaLLy.

Conservative veLues for <'>0 end em ere edequete to

represent en epproxlmetlon of the c~osed-LooD
positioning dynemlc for the robot.

We express the dynamic behavior of e robot

manipulator In response to forces on the robot end-

point simiLarLy. We can express the sensitivity of e

robot manipulator by a matrix, S. The motion of the

end-point of a robot under the Imposed force, d, et the

end-point, In the ebsence of eny Input trajectory

vector con be given by equation 8.

f-E(x) (11)
Xo Is the the Initio I. I.ocotlon of the point of contoct

before deformotlon occurs end y Is the robot end-point

position (x -y-xo)' No ossumptlon Is mode on the

structure of E. We ol.so ossume E Is stobl.e In Lp-sense;



y

x,Xo

environment when they ere In contect with eoch other.
Note thot In some eppLlcotlons, the robot wiLL hove onLy

unl-dlrectlonaL force on the environment. For exampLe,
In the grInding of 0 surfoce by 0 robot, the robot con

onLy push the surfoce. If one considers positive f, for

.pushlng" end negotlve fl for "puLLing", then In this cLoss
of monlpuLatlon, the robot manipuLator end the

environment are In contact with each other onLy aLong

those directions where f,> 0 for 1-1,...,n. In some

oppLlcotlons such as screwing e boLt, the Interaction
force can be posItIve and negotlve. ThiS meons the

robot cen heve cLockwise end counter-cLockwise

Interectlon torque. The nonLlneer dlscrlmlnetor
bLock-dlogrom In Figure 3 Is drown with do shed-Line to
II.Lustrate the above concept.

Considering equations 5 and 11, equotlons 13 end
14 represent the entire dynomlc behavior of the robot

end environment as a whoLe.

Figure 2: The Environment and Its Dynamics

E:L np-L np ond olso there exist constonts such os Clc3

ond ~3 such thot IIE(xJllp<Clc3I1xllp+ ~3.

y-G(e) + Sf-f)

f-E[x) where (14)

5.2 Dynamic Behavior of the Environment in Frequency

Domain

Extending equotlon 11 to cover the I.lneorl.y

treoted environment, equotlon 12 represents the

dynomlc behovlor of the environment with I.lneor

dlfferentlol. equetlons.

The bl,ock dlogrom In Figure 3 shows the noture of

mappings 13 ond 14.

f(jc-» -E(jc-» x(jc-» {12)

E(jcu) Is a transfer function matrix that mops the

ompLltude of the dlspLocement vector, x to the

ompLltude of the contoct force, f. The motriX E Is 0 nKn
tronsfer function motrlx. No ossumptlon obout E Is

mBde; E Is 0 slnguLor motrlx when the robot Interocts

with the environment In onLy some directions. For

exompLe, In grinding 0 surfoce, the robot Is constrBlned

by the environment In the direction normBL to the

surfBce onLy. ReBders CBn be convinced of the truth of

equBtlon 12 by BnBLyzlng the reLBtlonshlp of the force

ond dlspLBcement of 0 spring BS B simpLe modeL of the

environment. E resembLes the stIffness of B spring.

Reference 3 end 4 represent (MS2+Cs+K) for E where

M, C ond K ere symmetric squBre motrlces ond s-jcu(9).

M Is the positive definIte Inertle mBtrlx whiLe C ond K

ore the dBmplng ond the stiffness motrlces.

If all the operators In Figure 3 are considered

linear transfer function matrices, equations 15 and 16

can be obtained from equations 13 and 14 to represent

the end point position and the contact force when xo- O.

y- (1+ SE)-1 G e (15)

f-E(1 + SE)-IGe (16)

Equations 13 and 14 (equations 15 and 16 In the
case of Linearly treated robots) represent the dynamic

behavior of the robot for both constrained and

unconstrained manipuLations. When the robot Is not In

contact with the environment, x-a and the equation

that governs the dynomlcs of the system Is given by

equation 1 (equation 6 for the Llnear\.y treated robots).
Note the natural feedback In the system; the force

developed In the system from the Interaction of the
robot manipulator and the environment affects the
robot motion In a feedback fashion.

6. Nonlinear Dynamic Behavior of the Robot Manipulator

and Environment
Suppose 0 monlpulotor with dynomlc equotlon 5 Is

In contoct with an environment given by equotlon 11.

The contact force will be equol to f. Note that when

the robot manlpulotor ond environment ore In contact

With each other, f- -d and x-y-xo. Figure 3 shows
the dynamics of the robot manlpul~tor ~nd the

.y-xo



To simplify our enelysis. V Is Introduced In

equation 17 es e mepplng from e to f In Figure 3.

environment ore In contoct, then the volue of the

contoct force end the end-poInt positIon of robot ore

given by fend y where the following equotlons ore
true:

f-V[e) [17)

The mBpplngs given by equBtlons 13 Bnd 14 CBn be

simpLified by mBpplng V: e-f where e Bnd f ere

shown In Figure 4. Note thBt V Is Bssumed BS stebLe

operBtor In Lp-sense; In otherwords: V:L np- L np end

eLso IIV(eJllp( &.111 ell+ ~1 where &.1 Bnd ~1 ere

constants. Note thBt one CBn stiLL define V Without

assuming the superposition of effects of e and d In

equBtlon 5. If BLL the operBtors In Figure 3 ere

trensfer function matrices, then V-E(I + SEJ-1 G

y-G[e) + S[-f)

f-E[x)

(18)

(19)

(20)

where x-y-xo

e-r-H[f)

If the operators In equations 18,19 and 20 ere

considered transfer function matrices, equations Z1 end

22 cen be obtelned to represent the Interectlon force
end the robot end point trejectory when Xc-D.

f-E(I+SE+GHE)-'Gr (21)

y-(I + SE+ GHE)-'Gr (22)~-~{~~]--.!..,.
Figure 4: The Mapping from the Trajectory to the

Contact Force

7. The Architecture of the Closed-loop System

The control. architecture In Figure 5 shows how

compliancy Is being developed In the system. The

motivation behind this architecture Is clarified In

Section 9 with the help of some equations. The

compensator, H Is considered to operate on the contect

force, f. The compensator output signal Is being

subtrected from the Input commend vector, r. resulting
In the error signal, e for the robot menlDuletor.

, .-:-'(-;.,
'- --~ f

(f
Xo

y x

'
04 ~~.

'TIL__.1

f

Compensator

Figure 5: The Closed-loop System

There are two feedback loops In the system; the

upper loop [whiCh Is the natural feedback loop), Is the

same as the one shown In Figure 3. This loop shows how
the contect force affects the robot In a naturel wey

when the robot Is In contact with the environment. The

lower feedback loop Is the controlled feedbeck loop.

If the robot and the environment are not In

contact, then the dynemlc behavior of the system

reduces to the one represented by equetlon 1, which Is

e simple positioning system. When the robot end the

We plan to choose a class of compensators, H, to

control the contact force With the Input command r. By

knowing S, G and E and choosing H one can shape the

contact force. The value of the H Is the designer choice
~nd depending on the task, It can have various values

In different directions. A large value for H develops a

compliant system while a small H generates a stiff
system. H must also guarantee the stability of the

closed-loop system of Figure 5. The trade-off between
the closed-loop stability and the size of H Is

Investigated In Sections 8 and 9.

When the robot Is not In contact with the

environment, the actual position of the robot end-point
Is governed by equation 1. When the robot Is In cont~ct

With the environment, then the contact force follows r

~ccordlng to equations 18, 19 and 20. The Input

command vector, r, Is used differently for the two

categories of maneuverlngs; as an Input trajectory
command In unconstrained sp~ce [equetlon 1) and as e

command to control force In constrained spece. We do
not command ~ny set-point for force es we do In

~dmlttance control (13,19). This method Is celled

Impedance Control [1,3,4) because It ~ccepts e position

vector ~s Input and It reflects ~ force vector ~s

output. There Is no hardware or softw~re switch In the

control system when the robot travels from

unconstrained space toconstralned sp~ce. The feedback

loop on the contact force closes natur~lly when the

robot encounters the environment.

Section 8 Is devoted to derlv~tlon of ~ sufficient
condition for closed st~bllity of the system In Figure 5,

when ~ll the oper~tors ~re nonllne~r m~pplngs.

Section 9 develops similar results when ell the

operators of Figure 5 ~re linear tr~nsfer function

m~trlces. We ~lso show th~t the st~bllity condition

derived In the llneer fr~me Is ~ subcl~ss of the

+ ,

~_.18{)":.[~~~_:~



condition derived by the nonLinear anaLysis. true

IIHV(e)llp< O"mex(H) x (&'411 ellp+ ~4) (28)8. Nonlinear Time Domain Stability Analysis

The objective of this section Is to Brrlve Bt a

suffIcient condition for stBblUty of the system shown In

Figure 5. This sufficient condition leBds to the

Introduction of a ClBSS of compensBtors. H. thBt CBn be

used to develop compliancy for the fBmlly of robot

manlpulBtors with dynBmlc behBvlor represented by

equBtlon 5. Using operBtor V defined by equBtlon 17.

the block dlBgrBm of Figure 6 Is constructed BS a

slmpUfied version of the block dlBgrBm of Figure 5. The

following theorem (SmBll GBln Theorem) stBtes the

stability condition of the closed-loop system shown In
Figure 6. A corollBry Is then followed to represent e
bound on H to guBrBntee the stBblllty of the system.

Comparing InequaLity 26wlth InequaLity 28. to guarantee
the cLosed-Loop stabiLIty. O"ma,,[H) Q:4 must be smaLLer

than unity. or. equivaLentLy:

0" ma,,[H) < 1/ Q:4 [29)

substituting for ~4 from Inequality 24:

IIV(eJllp

To guorontee the stobility of the closed-loop system,

the O"max(H) must be less thon the reclprocol of the

"mognltude" of the mopping In the forword loop In

Figure 6. A slmllor result Is given In Section 9 using

multlvorloble Nyquist Crlterlo.
Figure 6: Manipulator and the Environment with Force

Feedback Compensator (Simplified Version of Figure 5)

Stability Theorem.

If:

I. V Is 0 lp-stoble operotor, th6t Is

0) V(e): Lnp-Lnp (23)

b) II v(e)lIp< tX.411 ellp+ ~4 (24)

where tX.4 and ~4 are positive constants, and If

]I. H Is chosen such that mapping HV.(e) Is Lp-stable,

thot Is

0) HV(e): L np- L np (25)

b) IIHV(e)lIp<tX.5I1ellp+~5 wheretX.5<1 (26)

then the closed-loop system (Figure 6) Is Lp- sta ble.

Condition I Is already assumed In Section 6. The Proof

Is gIven In Appendix A.

9. Frequency Domain Stability Analysis

The objective of this section Is to arrive at a

sufficient condition for stability of the system shown In

Figure 5 when all the operators are linear tranfer

function matrices. This sufficient condition leads to the

Introduction of a class of transfer function matrices H,

that stabilizes the family of linearly treated robot

manipulators end environment with dynamic equations
11 end 12. The detailed derivation for the stability

condition Is given In Appendix C. According to the

results of Appendix C, the sufficient condition for

stability Is given by Inequality 32.

U'max(GHE)(U'mln(SE + In) for ell we(O,oo) (32)

or a more conservative condition,
1

U'm a x (H) ( db'"'==-
Corollary

The key parameter In the theorem Is the size of

Qo5' According to the above theorem, to guarantee the

c~osed-~oop stabl~lty of the system, H must be chosen
such that the norm of HV(e) Is ~Inear~y bounded with a

slope that Is sma~~er than unity. We choose H as a

transfer function matrix, therefore Inequa~lty 27 Is

true.

O"max (E(SE + In)-IG)

for ell we(D,oo) [33J

If H Is chosen outside of this ClBSS, InstBblllty and

consequent separation may occur. Inequality. 33 Is a
sufficient condition for stcbllity. If Inequality 33 Is not
satisfied, no conclusion on the stability of the system
can be echleved. Note the Slmllcrlty of the frequency

domB/n stBblllty condit/on with the one obtBlned by

InequBllty 31. Substituting E(SE+InJ-IG for V In

Inequellty 31 and using the notation of singular values
when p-2, Inequality 33 will result. According to

IIHV(eJllp< O"max(HJxllV(eJllp (27)

where O"max(H) Is the moxlmum slngulor volue of Hover

all CA>E(O,~). COnSidering Inequality 24, Inequality 28 Is

"7



InequBllty "3"3, the "size" of H In ell directions must be
smaller thBn the reclprocBl of the maximum "size" of

the forward loop trBnsfer function, E(SE+!nJ-IG.
-r...o-:.. ~ f

0- miX (H)( for cll we(O,oo) [37)
1

a- max [5-1 GJ

-1

E(SE+I n) G It Is cleor thot If the environment Is verl;/ rigid,

then one must choose 0 verl;/ smoll H to sotlsfl;/ the

stobilltl;/ of the sl;/stem when S Is .smoll". (A good

positioning sl;/stem hOB .smoll. S). Since G~In for ell

c.>E(O,c.>o), the bound for H. for 0 rigid environment

end e .smoll" stiffness, Is given bIoI Inequelltl;/ 38.

H

Figure 7: The Simplified Form of Figure 5

InequaLltlJ 33 reveaLs some facts about the size of H.

The smaLLer the sensltlvltlJ of the robot manipuLator Is,

the smaLLer H must be chosen. ALso from InequaLltlJ 33,

the more rigid the environment Is, the smaLLer H must

be chosen. In the "IdeaL case", no H can be found to

aLLow a perfect positioning slJstem [S -0) to Interact

with an InflnlteLIJ rigid environment [E- 00).

O"max (H) (O"mln(S) for al.l. we(O.woJ [38)

If S Is zero, then no H con be obtolned to stoblllze the
system. In other words to stobllize the system of the

very rigid environment ond the robot, there must be 0
minimum compliancy In the robot.

9.2 Stability Condition when n=1

In the cose of the one degree of freedom system

In Figure 8 the condition for stoblLity Is given by

Inequo~lty 39.

9.1 Stability for very rigid environment

In most monufocturlng tosks such os robotic

deburrlng. the end-point of the robot monlpu~otor Is In

contoct With 0 very stiff environment. Robotic

deburrlng ond grinding ore exomp~es of proctlco~ tosks
In which the robot Is In contoct with hord

envlronment(5, 7 .8). According to the resu~ts In

Appendix B, when the environment Is very stiff. (E Is

very .~orge. In the slngu~or vo~ue sense). the ~Imltlng
vo~ue for the contoct force ond the end-point position

ore given by equotlons 34 ond 35 respectlve~y:

f~ -(S+GH)-IG r (34)

(35)

IIHGII2 < II[S+1/EJII2 for 6LL ooe(O,oo) [39)

where 11.11 denotes the magnitude of a transfer

function. Since In manbj cases G~' for oLL 0<00<000' then
H must be chosen such that the foLLowing InequaLltbj Is

sotlsfled.

IIHII2 < II£S+I/EJII2 for 6ll we(O,wo (40)

InequBllty 39 cleBrly shows thBt the more rigid the

environment IS, the smBller H must be chosen to

guBrBntee the stBblllty of the closed-loop system. In

the CBse of B rigid environment ("lBrge" E) Bnd B "good"

positioning system, H must be chosen BS B very smBll

goln.

1J00.0

Since G~In for all (l;)E[O,(I;)o), the value of the contect

force, f, within the bandwidth of the system [0,(1;)0) cen

be opproxlmated by equotlon 36:

foo ~ [S+H)-lr for ell (l;)E[O,(I;)o) [36) We conclude that for stability of the environment
and the robot taken as a whole, there must be some

Initial compliancy either In the robot or In the

environment. The Initial compliancy In the robot can be

obtained by a non-zero sensitivity function or a passive

compliant element such as an RCC (Remote Center

Compliance). Practitioners always observed that the
system of a robot and a stiff environment can always
be stabilized when a compliant element (e.g. piece of

rubber or an RCC) I~ Installed between the robot and

environment. One can also stabilize the system of robot
and environment by Increasing the robot sensitivity

function. In many commercial manipulators the
sensitivity of the robot manipulators can be Increased

by decreasing the gain of each actuator positioning
loop. This also results In a narrower bandwidth (slow

response In the unconstrained maneuvering) for the

By knowing S 6nd choosing H. one c6n sh6pe the cont6ct
force. The v6lue of (S+ H) within (0,000) Is the designer's

choice 6nd. depending on the t6sk. It C6n h6ve V6rlous

v6lues In different dlrectlons(3,4). A l6rge v6lue for

(S+H) within (0,000) develops a compll6nt system while a

small (S+H) generotes 6 stiff system. If H Is chosen such

that (S+ H) Is "l6rge" In the slngul6r value sense at high

frequencies, then the contact force In response to high

frequency components of r will be sm6ll. If H Is chosen
to gu6r6ntee the compll6nce In the system according to

equation 34, then It must also satisfy the st6bllity

condition. It C6n be shown th6t the st6bllity crlterlo for

Inter6ctlon with 6 very rigid environment Is given by

InequalIty 37:



where WI Is the weighting factor. WI IS particularly

usefuL for scellng forces and torques of different units.

Deflnltlnn ~: Let v(.): L npe- L npe. We sey that the

operetor V(.) Is Lp-stable, If:

a) v(.): Lnp- Lnp

robot positioning system

b)there exist finite real. constants (X1 and ~1 such that

liVre) IIp<Oc1I1ellp+~1 V' eeLnp

According to this definition we first ossume thot
the operotor mops L npe to L npe. It Is cleor thot If one

does not show thot v(.):L npe-L npe' the sotlsfactlon of

condItion (0) Is Impossible since L npe contolns L np. Once

the moppIng, v(.), from Lnpe to Lnpe Is estobllshed, then
we soy thot the operotor v(.) Is Lp-stoble If, whenever

the Input belongs to L np, the resulting output belongs

to L np. Moreover the norm of the output Is no lorger

then 0:4 times the norm of the Input plus the offset

constont ~4'

10. Summary and Conclusion

~ new controller orchltecture for compllonce

control hos been Investlgoted using unstructured

models for dynomlc behovlor of robot monlpulotors ~nd

environment. ThiS unified oppro~ch of modeling robot

~nd environment dyn~mlcs Is expressed In terms of

sensitivity functions. The control ~pprooch ~llows not

only for trocklng the Input-commond vector, but olso

for complloncy In the constrolned mneuverlngs. A bound

for the globol stobility of the m~nlpul~tor ~nd

environment hos been derived. For stobility of the

environment ond the robot token os ~ whole, there

must be some Inltlol complloncy either In the robot or In

the environment. The Inltlol compll~ncy In the robot

c~n be obtolned by 0 non-zero sensitivity function or 0

p~sslve compll~nt element such ~s on RCC (Remote

Center Compllonce).
Appendix A'

Definitions 1 to 7 will be used In the st~blllty proof

of the closed-loop system (16,17).

DefinitIon R, The smal-l-est 0:1 such that there exist a ~1

so that Inequal-ity b of Definition 5 Is satisfied Is cal-l-ed

the gain of the operator v(-),

Definition 1: For 01.1. pe(1.oo). we I.obel. os Lnp the set

consisting of 01.1. functions f-(fl.f2 fn)T: (O.oo)_~n

such thot:

Definition 7~ Let V(.):L np8- L np8'

sold to be cousoL If:

The operator V(.) Is

for I -1, 2,...,n

00

I I fliP dt (00

0

V(e)T -V(eT) 'v' T<oo and 'v' eeLnpe

Proof of the stability theorem

Define the cLosed-Loop mapping A:r-e (Figure 6).

e-r-HV(e) [At)
Definition 2: For aLL T e[O, 00), the function fT defined

by:
For ecch finite T. InequcLlty A2 Is true.

IleTllp< II rTllp+ II HV(e)Tllp for cLL te(O. T)
O(t(T

fT -
Since HV(e)IS Lp-stoble.Therefore, Inequollt~ A31s true

IleTllp(llrTllp+Qc5I1eTllp+~5 for all te(O.T) (A3)

T<t

[:

Is celled the truncation of f to the Interval [0, T).

Since a.5 Is I-ess then unity:

neflnltlon 3: The set of aLL functions f-[fl,f2 ,fnJT:

[O,ooJ-~n such that fTELnp for eLL finite T Is denoted

by L npe. f by ItseLf mayor may not beLong to L np.

II eTllp <
-C¥.s

Inequellty A4, shows that e(') Is bounded over (0, T),

Because this reasoning Is valid for every finite T, It

follows that e(')e L np8' I.e., that A:L npe-L np8' Next we

show thet the mapping A Is Lp-stable In the sense of

definition 5, Since reLnp, therefore IIrllp<co for all

te(O,co), therefore Inequality A5 Is true,

Definition 4: The norm on Lpn Is defined by:

] 1/2
Ilfll p -

where Ilf,lIp Is defined as:

for ell te(O. 00)lIellp < 00IIp00

l wll fliP dtII (, lip InequaUty AS Implies e belongs to Lp-space whenever r
belong to Lp-space.Wlth the seme reasoning from



equotlons A1 to A5, It con be shown thot Inequo\.lty A6 Is

true.

(A6)lIell p <.

Figure C1: Simplified Block-Diagram of the System in

Figure 5

end SE. SE shows the natural force feedback while GHE

represents the controlled force feedback In the
system. If H-O, then the system In Figure C1 reduces
to the system In Figure 3 (a stabLe positioning robot

manipulator which Is In contact with the environment E.)
The objective Is to use Nyquist Criteria (10) to arrive at

the sufficient condition for stability of the system when

H- O. The folLowing conditions are regarded:

Inequality A6 shows the linear boundedness of e.

(Condition b of definition 5) Inequality A6 and A5 token

together, guBrontee thBt the closed-loop mopping A Is

Lp-stoble. -
Appendix B

A very rigid environment generBtes B very lBrge

force for B smBll dlsplocement. We choose the minimum

slngulor volue of E to represent the size of E. The

following theorem stotes the limiting volue .of the force

when the robot monlpulotor Is In contoct with 0 very

rigid environment.

Theorem

If 0- mlnfE» M, where M Is Bn BrbltrBrlLy LBroe number,

then the vBLue of the force given by equBtlon 21 wiLL
~pproBch to the expression given by equBtlon 81

f 00 -(5+ GHJ-1G r (81)

1) The closed loop system In Figure C1 Is stable If H-O.

ThiS condition simply stotes the stability of the robot

manlpulotor and environment when they are In

contoct. (Figure 3 shows this configuration.!

2) H Is chosen as a stable llneor transfer function

motrlx. Therefore the ougmented loop transfer

function (GHE+SE) has the some number of unstoble

poles thot SE hos. Note that In mony cases SE Is 0

stoble system.
3) Number of poles on Jc.> oxls for both loop SE end

GHE+SE ore equol.

Considering thot the system In Figure C1 Is stoble

when H-O, we plon to find how robust the system Is

when HE Is odded to the feedbock lo~p. If the loop

tronsfer function SE (without compensotor, H] develops

0 stoble closed-loop system, then we ore looking for 0
condition on H such thot the ougmented loop tronsfer
function (GHE + SE] guorontees the stobility of the

closed-loop system. According to the Nyquist Crlterlo,

the system In Figure C1 remolns stoble If the clockwise
encirclement of the det(SE + GHE + In] oround the center

of the S-plone Is equol to the number of unstoble poles
of the loop tronsfer function (SE + GHE]. According to

conditions 2 end 3. the loop tronsfer functions SE end

(SE+GHE] both hove the some number of unstoble
I

poles. The closed-loop system when H-O Is stoble
occordlng to condition 1; the encirclements of
det(SE + I n] Is equol to unstoble poles of SE. When H Is

odded to the system, for stobility of the closed-loop
system, the number of the encirclements of

det(SE+GHE+In] must be equol to the number of
unstoble poles of the (SE + GHE]. Since the number of

unstoble poles of (SE+GHE] ond SE ore the some,
therefore for stobility of the system det(SE + GHE + In]

must hove the some number of encirclements thot

Proof: We will prove that IIf~-fIl2 approaches a small

number as M epproaches a large number.

f~-f -(S+ GHjl [In- (S+ GH) E On+ SE + GHE )-I]Gr (62)

Factoring On+ SE + GHE)-I to the right hand side:

f ~ -f -(S+GH)-I On+SE+GHE)-1 Gr (63)

IIf~- f 112 <O'max[S +G HJI xO'maxVn+S E +G HEll

x 0' mIx (G) II rll2 (64)

O'max (G) II rll2
II foo-fl12 < [65)

O"mln(S+G H) I< [O"mln(S E+G HE) -1]

0" mal< (G) II r 112
II foo-fll2 < (B6)

O'mln(S+G H»)([O'mln(S+GH»)(O'mln(E) -1]

O"max[GJ end O"mln[S+GHJ ere bounded values. If

O"mln[EJ>M. then It Is cleer thet the left hand side of

Inequality B6 can be en arbitrarily small number by

ch.ooslng M to be e lerge number. The proof for y~~ 0

Is slmller to the ebove.

Appendix C

The objective Is to find e sufficient condition for

stebility of the closed-loop system In Figure 5 by

Nyquist Criteria. The block dlagrem In Figure 5 can be

reduced to the block diagram In Figure C1 when ell the

operators are linear transfer function matrices and

xo. 0

There ere two elements In the feedback loop; GH£



det[SE + In) has. A suffIcient conditIon to guarantee the

equality of the number of encirclements of

det[SE+GHE+InJand det[SE+In)IS thot the det(SE+GHE+InJ
does not poss through the origIn of the s-plone for all

possible non-zero but fInite values of H, or

det [SE + GHE + In)~ 0 for all cue[O,oo) (C1)

A sufficient condition to guarantee that det (SE + GHE + In)

Is not equal to zero Is given by Inequollty C2.

O"max (GHE)(O"mln (SE+In) for oll we(O,oo) (C2)

or 0 more conservotlve condition:

CTmax[H)( forallc.>e[O,oo) (C3)
0" max [E (SE + 1n)-1 G)

Note th~t E(SE + Injl G Is the tr~nsfer function m~trlx

that mops e to the contact force, f. Figure 7 shows the

closed-loop system. According to the result of the

theorem, H must be chosen such that the size of H Is

smaller than the reciprocal of the size of the forw~rd
loop transfer function, (E(SE + I n)-IGJ.
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